楼主: mlr
5683 21

[下载]Carmona Statistical Analysis of Financial Data in S-PLUS [推广有奖]

  • 0关注
  • 9粉丝

已卖:6484份资源

博士生

68%

还不是VIP/贵宾

-

威望
0
论坛币
36884 个
通用积分
84.7645
学术水平
27 点
热心指数
48 点
信用等级
23 点
经验
4276 点
帖子
185
精华
1
在线时间
85 小时
注册时间
2005-7-8
最后登录
2020-3-4

楼主
mlr 发表于 2005-10-23 02:44:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

Contents

Part I DATA EXPLORATION, ESTIMATION AND SIMULATION

1 UNIVARIATE EXPLORATORY DATA ANALYSIS ............... 3


1.1 Data,RandomVariablesandTheirDistributions................. 3


1.1.1 ThePCSData....................................... 4


1.1.2 TheS&P500IndexandFinancialReturns ............... 5


1.1.3 RandomVariablesandTheirDistributions ............... 7


1.1.4 ExamplesofProbabilityDistributionFamilies............ 8


1.2 FirstExploratoryDataAnalysisTools ......................... 13


1.2.1 RandomSamples .................................... 13


1.2.2 Histograms ......................................... 14


1.3 MoreNonparametricDensityEstimation....................... 16


1.3.1 KernelDensityEstimation............................. 17


1.3.2 ComparisonwiththeHistogram........................ 19


1.3.3 S&PDailyReturns................................... 19


1.3.4 ImportanceoftheChoiceoftheBandwidth .............. 22


1.4 QuantilesandQ-QPlots..................................... 23


1.4.1 UnderstandingtheMeaningofQ-QPlots................ 24


1.4.2 ValueatRiskandExpectedShortfall.................... 25


1.5 EstimationfromEmpiricalData .............................. 28


1.5.1 TheEmpiricalDistributionFunction .................... 28


1.5.2 OrderStatistics...................................... 29


1.5.3 EmpiricalQ-QPlots.................................. 30


1.6 RandomGeneratorsandMonteCarloSamples.................. 31


1.7 ExtremesandHeavyTailDistributions......................... 35


1.7.1 S&PDailyReturns,OnceMore........................ 35


1.7.2 TheExampleofthePCSIndex......................... 37


1.7.3 TheExampleoftheWeeklyS&PReturns................ 41
Problems ...................................................... 4
3
Notes&Complements........................................... 4
6


2 MULTIVARIATE DATA EXPLORATION ....................... 49


2.1 MultivariateDataandFirstMeasureofDependence ............. 49


2.1.1 DensityEstimation................................... 51


2.1.2 TheCorrelationCoefcient............................ 53


2.2 TheMultivariateNormalDistribution.......................... 56


2.2.1 SimulationofRandomSamples ........................ 57


2.2.2 TheBivariateCase................................... 58


2.2.3 ASimulationExample................................ 59


2.2.4 LetsHaveSomeCoffee .............................. 60


2.2.5 IstheJointDistributionNormal? ....................... 62


2.3 MarginalsandMoreMeasuresofDependence .................. 63


2.3.1 EstimationoftheCoffeeLog-ReturnDistributions ........ 64


2.3.2 MoreMeasuresofDependence......................... 68


2.4 CopulasandRandomSimulations............................. 70


2.4.1 Copulas ............................................ 71


2.4.2 FirstExamplesofCopulaFamilies...................... 72


2.4.3 CopulasandGeneralBivariateDistributions.............. 74


2.4.4 FittingCopulas...................................... 76


2.4.5 MonteCarloSimulationswithCopulas.................. 77


2.4.6 ARiskManagementExample ......................... 80


2.5 PrincipalComponentAnalysis ............................... 84


2.5.1 IdenticationofthePrincipalComponentsofaDataSet ... 84

2.5.2 PCAwithS-Plus .................................. 87


2.5.3 EffectiveDimensionoftheSpaceofYieldCurves......... 87


2.5.4 SwapRateCurves ................................... 90
Appendix1:CalculuswithRandomVectorsandMatrices ............. 9
2
Appendix2:FamiliesofCopulas .................................. 9
5
Problems ...................................................... 9
8
Notes&Complements........................................... 10
1


Part II REGRESSION

3 PARAMETRIC REGRESSION ................................105


3.1 SimpleLinearRegression.................................... 105


3.1.1 GettingtheData..................................... 106


3.1.2 FirstPlots .......................................... 107


3.1.3 RegressionSet-up.................................... 108


3.1.4 SimpleLinearRegression ............................. 111


3.1.5 CostMinimizations .................................. 114


3.1.6 RegressionasaMinimizationProblem .................. 114


3.2 RegressionforPrediction&Sensitivities....................... 116


3.2.1 Prediction .......................................... 116


3.2.2 IntroductoryDiscussionofSensitivityandRobustness ..... 118

3.2.3 ComparingL2andL1Regressions ..................... 119


3.2.4 TakingAnotherLookattheCoffeeData................. 121


3.3 SmoothingversusDistributionTheory......................... 123


3.3.1 RegressionandConditionalExpectation................. 123


3.3.2 MaximumLikelihoodApproach........................ 124


3.4 MultipleRegression ........................................ 129


3.4.1 Notation............................................ 129


3.4.2 TheS-Plus Functionlm ............................ 130


3.4.3 R2 asaRegressionDiagnostic ......................... 131


3.5 MatrixFormulationandLinearModels ........................ 133


3.5.1 LinearModels....................................... 134


3.5.2 LeastSquares(Linear)RegressionRevisited ............. 134


3.5.3 FirstExtensions ..................................... 139


3.5.4 TestingtheCAPM ................................... 142


3.6 PolynomialRegression...................................... 145


3.6.1 PolynomialRegressionasaLinearModel ............... 146


3.6.2 ExampleofS-Plus Commands....................... 146


3.6.3 ImportantRemark ................................... 148


3.6.4 PredictionwithPolynomialRegression.................. 148


3.6.5 ChoiceoftheDegreep ............................... 150


3.7 NonlinearRegression ....................................... 150


3.8 TermStructureofInterestRates:ACrashCourse................ 154


3.9 ParametricYieldCurveEstimation............................ 160


3.9.1 EstimationProcedures................................ 160


3.9.2 PracticalImplementation.............................. 161


3.9.3 S-Plus Experiments ................................ 163


3.9.4 ConcludingRemarks ................................. 165
Appendix:CautionaryNotesonSomeS-Plus Idiosyncracies ......... 16
6
Problems ...................................................... 16
9
Notes&Complements........................................... 17
2


4 LOCAL & NONPARAMETRIC REGRESSION ..................175


4.1 ReviewoftheRegressionSetup .............................. 175


4.2 NaturalSplinesasLocalSmoothers ........................... 177


4.3 NonparametricScatterplotSmoothers.......................... 178


4.3.1 SmoothingSplines ................................... 179


4.3.2 LocallyWeightedRegression .......................... 181


4.3.3 ARobustSmoother .................................. 182


4.3.4 TheSuperSmoother.................................. 183


4.3.5 TheKernelSmoother................................. 183


4.4 MoreYieldCurveEstimation ................................ 186


4.4.1 AFirstEstimationMethod ............................ 186


4.4.2 ADirectApplicationofSmoothingSplines .............. 188


4.4.3 USandJapaneseInstantaneousForwardRates............ 188


4.5 MultivariateKernelRegression............................... 189


4.5.1 RunningtheKernelinS-Plus ........................ 192


4.5.2 AnExampleInvolvingtheJune1998S&PFuturesContract 193

4.6 ProjectionPursuitRegression ................................ 197


4.6.1 TheS-Plus Functionppreg ......................... 198


4.6.2 ppreg PredictionoftheS&PIndicators................. 200


4.7 NonparametricOptionPricing................................ 205


4.7.1 GeneralitiesonOptionPricing ......................... 205


4.7.2 NonparametricPricingAlternatives..................... 212


4.7.3 DescriptionoftheData ............................... 213


4.7.4 TheActualExperiment ............................... 214


4.7.5 NumericalResults ................................... 220
Appendix:KernelDensityEstimation&KernelRegression............ 22
2
Problems ...................................................... 22
5
Notes&Complements........................................... 23
3


Part III TIME SERIES & STATE SPACE MODELS

5 TIME SERIES MODELS: AR, MA, ARMA, & ALL THAT .........239


5.1 NotationandFirstDenitions ................................ 239


5.1.1 Notation............................................ 239


5.1.2 RegularTimeSeriesandSignals ....................... 240


5.1.3 CalendarandIrregularTimeSeries ..................... 241


5.1.4 ExampleofDailyS&P500FuturesContracts ............ 243


5.2 HighFrequencyData ....................................... 245


5.2.1 TimeDate Manipulations ............................ 248


5.3 TimeDependentStatisticsandStationarity ..................... 253


5.3.1 StatisticalMoments .................................. 253


5.3.2 TheNotionofStationarity............................. 254


5.3.3 TheSearchforStationarity............................ 258


5.3.4 TheExampleoftheCO2 Concentrations ................ 261


5.4 FirstExamplesofModels.................................... 263


5.4.1 WhiteNoise ........................................ 264


5.4.2 RandomWalk....................................... 267


5.4.3 AutoRegressiveTimeSeries .......................... 268


5.4.4 MovingAverageTimeSeries .......................... 272


5.4.5 UsingtheBackwardShiftOperatorB................... 275


5.4.6 LinearProcesses..................................... 276


5.4.7 Causality,StationarityandInvertibility .................. 277


5.4.8 ARMATimeSeries.................................. 281


5.4.9 ARIMAModels ..................................... 282


5.5 FittingModelstoData ...................................... 282


5.5.1 PracticalSteps....................................... 282


5.5.2 S-Plus Implementation ............................. 284


5.6 PuttingaPriceonTemperature ............................... 289


5.6.1 GeneralitiesonDegreeDays........................... 290


5.6.2 TemperatureOptions ................................. 291


5.6.3 StatisticalAnalysisofTemperatureHistoricalData........ 294
Appendix:MoreS-Plus Idiosyncracies ........................... 30
1
Problems ...................................................... 30
4
Notes&Complements........................................... 30
8


6 MULTIVARIATE TIME SERIES, LINEAR SYSTEMS & KALMAN FILTERING .......................................311

6.1 MultivariateTimeSeries..................................... 311


6.1.1 StationarityandAuto-CovarianceFunctions.............. 312


6.1.2 MultivariateWhiteNoise.............................. 312


6.1.3 MultivariateARModels .............................. 313


6.1.4 BacktoTemperatureOptions .......................... 316


6.1.5 MultivariateMA&ARIMAModels .................... 318


6.1.6 Cointegration ....................................... 319


6.2 StateSpaceModels......................................... 321


6.3 FactorModelsasHiddenMarkovProcesses .................... 323


6.4 KalmanFilteringofLinearSystems........................... 326


6.4.1 One-Step-AheadPrediction............................ 326


6.4.2 DerivationoftheRecursiveFilteringEquations........... 327


6.4.3 WritinganS FunctionforKalmanPrediction............. 329


6.4.4 Filtering............................................ 331


6.4.5 MorePredictions .................................... 332


6.4.6 EstimationoftheParameters........................... 333


6.5 ApplicationstoLinearModels................................ 335


6.5.1 StateSpaceRepresentationofLinearModels............. 335


6.5.2 LinearModelswithTimeVaryingCoefcients ........... 336


6.5.3 CAPMwithTimeVaryingβs ......................... 337


6.6 StateSpaceRepresentationofTimeSeries...................... 338


6.6.1 TheCaseofARSeries................................ 339


6.6.2 TheGeneralCaseofARMASeries..................... 341


6.6.3 FittingARMAModelsbyMaximumLikelihood.......... 342


6.7 Example:PredictionofQuarterlyEarnings ..................... 343
Problems ...................................................... 34
6
Notes&Complements........................................... 35
1


NONLINEAR TIME SERIES: MODELS AND SIMULATION ......353

7.1 FirstNonlinearTimeSeriesModels ........................... 353


7.1.1 FractionalTimeSeries................................ 354


7.1.2 NonlinearAuto-RegressiveSeries ...................... 355


7.1.3 StatisticalEstimation ................................. 356


7.2 MoreNonlinearModels:ARCH,GARCH&AllThat............ 358


7.2.1 Motivation.......................................... 358


7.2.2 ARCHModels ...................................... 359


7.2.3 GARCHModels..................................... 361


7.2.4 S-Plus Commands ................................. 362


7.2.5 FittingaGARCHModeltoRealData................... 363


7.2.6 Generalizations...................................... 371


7.3 StochasticVolatilityModels.................................. 373


7.4 DiscretizationofStochasticDifferentialEquations............... 378


7.4.1 DiscretizationSchemes ............................... 379


7.4.2 MonteCarloSimulations:AFirstExample............... 381


7.5 RandomSimulationandScenarioGeneration................... 383


7.5.1 ASimpleModelfortheS&P500Index ................. 383


7.5.2 ModelingtheShortInterestRate ....................... 386


7.5.3 ModelingtheSpread ................................. 388


7.5.4 PuttingEverythingTogether........................... 389


7.6 FilteringofNonlinearSystems ............................... 391


7.6.1 HiddenMarkovModels............................... 391


7.6.2 GeneralFilteringApproach............................ 392


7.6.3 ParticleFilterApproximations ......................... 393


7.6.4 FilteringinFinance?StatisticalIssues................... 396


7.6.5 Application:TrackingVolatility........................ 397
Appendix:PreparingIndexData................................... 40
3
Problems ...................................................... 40
4
Notes&Complements........................................... 40
8


APPENDIX: AN INTRODUCTION TO S AND S-Plus ...............411


References ......................................................429

[此贴子已经被作者于2006-2-24 8:46:00编辑过]

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Statistical statistica financial statistic Financia Analysis Statistical financial Data Carmona

本帖被以下文库推荐

沙发
mlr 发表于 2005-10-23 02:46:00

已上传到论坛,可直接下载

40673.rar (3.62 MB, 需要: 20 个论坛币) 本附件包括:

  • Carmona - Statistical Analysis of Financial Data in S-PLUS 2004.pdf


[此贴子已经被作者于2006-2-24 8:49:00编辑过]

藤椅
秋忆 发表于 2005-10-23 15:23:00
花钱买了,怎么无法显示那个网页啊楼主,千万不要骗人啊,小心被版主扣钱啊

板凳
秋忆 发表于 2005-10-23 15:24:00
传上来吧,老大,我花钱了,缺无法下载,能否发给我啊,liuqiangalong@163.com

报纸
research 发表于 2005-10-23 15:35:00
提示: 作者被禁止或删除 内容自动屏蔽

地板
raindrop 发表于 2005-10-23 17:12:00

下载速度很快,谢谢。

7
Lao9 发表于 2005-10-24 04:06:00
Have problem to unwinrar the file. The error message is: !   C:\MY-docs\My-Learnings\SAFD.rar: CRC failed in the encrypted file Camona - Statistical Analysis of Financial Data in S-PLUS 2004.pdf (wrong password ?). Any idea? The PW used is Posted_to_pinggu.org.

8
mlr 发表于 2005-10-24 10:23:00
As stated in my posting, you have to input the password through the keyboard, i.e. type in the whole password.

9
qw789789 发表于 2005-10-24 11:26:00
解压时提示密码错误。

10
mlr 发表于 2005-10-24 11:52:00
请用键盘输入密码

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-26 05:52