我们知道,在机器学习中,随机森林是一个包含多个决策树的分类器, 并且其输出的类别是由个别树输出的类别的众数而定的。
现在,我想有某个已经完成的rf模型,我想看里面每一颗决策树的具体叉分状况,怎么可以实现?
Call: hpdRF_parallelForest(formula = CROSS_BORDER_GRY_MKT_FG ~ ., data = val9, ntree = 30, na.action = na.omit, nExecutor = nparts, completeModel = TRUE) Type of random forest: classification Number of trees: 30No. of variables tried at each split: 4
参数:do.trace
If set to TRUE, give a more verbose output as randomForest is run. If set to some integer, then running output is printed for every do.trace trees.
如果设置为TRUE,提供更详细的输出randomForest运行。如果设置为某个整数,然后运行打印输出每do.trace树木。


雷达卡



京公网安备 11010802022788号







