<P ><FONT size=3>运用最优化方法,我们建立<FONT face="Times New Roman">hamiltonian</FONT>(哈密尔顿函数):</FONT></P>
<P ><v:shapetype><v:stroke joinstyle="miter"></v:stroke><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"></v:f><v:f eqn="sum @0 1 0"></v:f><v:f eqn="sum 0 0 @1"></v:f><v:f eqn="prod @2 1 2"></v:f><v:f eqn="prod @3 21600 pixelWidth"></v:f><v:f eqn="prod @3 21600 pixelHeight"></v:f><v:f eqn="sum @0 0 1"></v:f><v:f eqn="prod @6 1 2"></v:f><v:f eqn="prod @7 21600 pixelWidth"></v:f><v:f eqn="sum @8 21600 0"></v:f><v:f eqn="prod @7 21600 pixelHeight"></v:f><v:f eqn="sum @10 21600 0"></v:f></v:formulas><v:path connecttype="rect" gradientshapeok="t" extrusionok="f"></v:path><lock aspectratio="t" v:ext="edit"></lock></v:shapetype><v:shape><v:imagedata><FONT size=3></FONT></v:imagedata></v:shape></P>
<P ><FONT size=3><FONT face="Times New Roman"> </FONT>通过对<FONT face="Times New Roman">C</FONT>求导来解方程:</FONT></P>
<P ><v:shape><v:imagedata><FONT size=3></FONT></v:imagedata></v:shape></P>
<P ><FONT size=3>对<FONT face="Times New Roman">t</FONT>求导:</FONT></P>
<P ><v:shape><v:imagedata><FONT size=3></FONT></v:imagedata></v:shape></P>
<P ><FONT size=3>用式<FONT face="Times New Roman">1d</FONT>除以<FONT face="Times New Roman">1e</FONT>,我们得到:</FONT></P><v:shape><v:imagedata></v:imagedata></v:shape>



雷达卡




京公网安备 11010802022788号







