一.一段经历,一点心得
一直追我博客的人想必是清楚我之前做交互设计,然后去轮岗过行业运营,然后突然就开始做产品经理了。我也觉得奇怪的是,上次发了一个招聘启事后,来加我微信的同学们,既有做交互的,也有做产品经理的,甚至还有在IBM做了5年BI数据分析师的……这样看来,我的博客逐渐成了一个交叉学科。
简单来说,也差不多如上图所示。
当时是一个新业务开拓,仅仅4个月的轮岗(非正式的轮岗,当时就是老大给了各个部门体验其他团队工作的机会,但是组织架构可以在轮岗结束后再恢复原岗位),结果成了职业历程上的分水岭。为什么呢?
行业运营除了日常的商家管理、活动策划以及选品外,当时的商业模式还需要我们介入整体的供应链管理。而虽然当时身处家居行业,供应链管理却是在不同行业之间有较大的共通性。所以后来又成立了一个横向的部门——供应链管理。于是从垂直行业里调出的部分同学加入这个横向部门。而供应链管理,离不开大量的数据分析工作,供应链整体效能如何?需要和BI部门通力合作,所以供应链管理部门合并到了BI部门。
于是我就“随波逐流”地成了BI部门的一员——虽然我们并不做具体的数据分析,更多是向分析师提需求。
再后来,供应链整体效能的数据统计和分析,是靠分析师们每天出手工报表和报告发送给各部门管理人员的。发了一段时间后,分析师苦不堪言,接收方也过于被动,当他在邮件里看到某个数据异常时,无法自己主动地进行探索钻取,所以自然而然有了将供应链报告“产品化”的需求。
要求:短、平、快。
资源:极少。没有设计师、PD、以及充足的开发人员支持。
原因很正常:大部分人都投入到了业务系统建设中(彼时,供应链管理系统、物流管理系统、认证系统、以及前台都处于开荒建设阶段)。
所以,因为我做过交互设计——会画DEMO;和PD接触时间长——多少知道PRD怎么写;又给分析师提过需求——知道数据大概怎么回事……
所以,我就“随波逐流”成了数据产品的产品经理。
插句后话,以后在晋升面试或者转岗面试时,当面试官问我怎么就突然从交互设计师转成数据产品经理时,最早我也是讲的随波逐流的故事……然后被挑战比较严重,后来换个说法:Why not?
有这个机会,大家都信任你,又不给你压力,又能学习到新领域的知识,和新的人打交道,同时还能继续沿用交互设计的技能知识,Why not? 然后对方就颔首了,所以讲故事的角度是多么重要。
说点这段故事中,让我真正坚定起来的两句话:
一个老大说:“给你机会去试错,错了大不了重头再来。”
另一个老大说:“设计师盯着皮肤看,产品经理要了解整体的经络组织和骨骼,更重要的是要知道数据作为血液如何在流通。你有机会深入皮肤之下看一下,再回来看皮肤感觉又不一样了。”
所以我是带着这个人体经络图的即视感忐忐忑忑接下了数据产品经理这个新的岗位的。
不用别人说,我也知道有两座大山需要翻:1. 数据 2. 产品经理。
二.本文目标
不指导就业,不提供数据分析解决方案,不承诺对任何人都必要有效。根据个人仅有的经验、心得,我只能:
1. 面向对数据分析、数据产品有兴趣但是又有点畏惧的交互设计师、产品经理
2. 希望能够让你们“减少对于数据世界的恐惧”,使用数据的语言“顺畅沟通”。
三.进入数据的世界
还记得你学习游泳的经历吗?记得我当时就是怎么都不敢下水。
我的教练告诉我的最有用的一句话是:你会憋气吧?你试试在浅水区里什么都不要做,松开栏杆,憋住气,让自己沉下去。如果你受不了了,反正你一站就站起来了。
我一想,也对,反正浅水区嘛。于是第一次松开了栏杆。
奇怪的事情发生了。我居然不会沉入水底耶~甚至透过泳镜看别人的脚扑腾扑腾!原来水里的世界没有那么的可怕!
克服了这个对水的恐惧后,才开始慢慢学习各种动作,开始享受水的乐趣。
数据的世界对于不了解它的人而言,正如这神秘的水一样。
那么我提供的让你不怕“水”的心得有:两个词、一个立方体、一张流程图
你准备好了吗?
两个词先复习一下你可能也听过的两句话:
如果你无法量化,那就无法很好管理。
无细分,不分析。
第一句话来自管理大师彼得德鲁克,第二句话则是分析界的金玉良言了。
这两句话里就隐含着我说的这两个词。
接下来,再来看一句话:成交10亿人民币!
肯定没有人单独说这样的话,一般情况,这句话前都要加上一些“定语”,比如“今年截至到7月份,全国蔬菜市场”,或“去年9月,女装市场”,或“过去N年,东三省猪肉市场”……等等。
这些语境里,也隐含着这两个词。
再来看一张图:
这是刚入门时,为了追求PPT的好看,做的一张概念图。虽然当时还没有体会到两个词的重要,但是从感觉上,我画了以上的图,有位前辈说,维度还不够。
哦,我后来才知道,中间的圈里,我大部分呈现的是度量,而下面的几个圈,我列了重要的一些维度。至于上面的几个圈里,应该是呈现的分析专题或功能。
至于你平时有机会接触到的各种数据可视化,报表,也基本上脱离不了这两个词,比如,若你去客服部门分析客户来电量(下图仅供演示,非真实场景数据)
1. 你按时间趋势来看总体来电量。当你发现某个月或某周来电量波动较大,你就需要添加别的“角度”来进一步细分。
2. 你按热线来细分来电量,看看来电拨打的什么热线。
3. 当你发现某个热线来电量波动异常后,你又需要进一步细分,看看此热线的来电是被什么接起公司承接的……
未完,见二楼
更多内容请关注CDA数据分析师



雷达卡





京公网安备 11010802022788号







