3880 12

[基础理论] 数据分析师点拨:大数据分析不能告诉你什么? [推广有奖]

企业贵宾

已卖:160份资源

巨擘

0%

还不是VIP/贵宾

-

威望
4
论坛币
624047 个
通用积分
180.5582
学术水平
918 点
热心指数
987 点
信用等级
841 点
经验
399203 点
帖子
9786
精华
48
在线时间
17322 小时
注册时间
2014-8-19
最后登录
2022-11-2

楼主
widen我的世界 学生认证  发表于 2016-3-19 16:33:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

数据分析师点拨:大数据分析不能告诉你什么?


数据分析师大火的时代,各个企业都争先恐后地进行大数据分析的跟风热潮,都渴望在这数据分析的背后寻得更多的发展和商机。确实,数据分析给社会带来的正效益是有目共睹的、也是价值巨大的。精确及时的数据分析的确可以给企业带去很多的发展规划和商业规律,但是大数据分析可不是万能的,我们在知道大数据分析能够带来什么的同时,也要知道大数据分析不能告诉你什么。只要知己知彼,才能做到百战不殆!



咨询师Barry Devlin介绍了一些人们因为统计数据分析不当而误解风险的案例,同时阐述了为什么业务决策不能完全由数据驱动。他提醒企业要清醒认识数据科学家的阴谋,同时接受普通业务人员的天真想法。


大数据分析的拥护者竭尽全力地鼓吹“数据驱动”,明智的人应该谨慎对待,并明确两个问题。一,业务人员在制定特定决策时是否真正理解相关数据,是否曾经以实用且可行的方式向管理层展示了这些数据?二,是否所有决策都有必要在收集“所有数据”之后自动完成?


在《认清风险:如何作出好决策》(Risk Savvy: How to Make Good Decisions)中,德国柏林Max Planck人类发展研究所管理主管Gerd Gigerenzer阐述了公共环境中风险测量与决策过程的问题,他的观点同样适用于商业领域。


首先,我们看看Gigerenzer举的一些例子。它们说明了大多数人所获得的统计数据只是很小一部分,而且我们很容易因为数据的不正确性或明显误用而产生错误结论。


在911事件的一年时间里,成千上万的美国人放弃乘坐飞机,转而选择开车长途远行,因为他们害怕遇到相同的袭击。高速公路行驶距离因此增长了5%,而道路交通意外死亡人数在一年里逐月上升,已经超过了过去五年的平均水平。此外,粗略计算有约1,600人丧身交通意外,而航空旅客及空乘人员的伤亡人数只有256人,其中还包括911事件的伤亡数字。


由于对当时伤亡事件产生了主观反应,美国公众完全忽视了有效的统计风险测量结果,即飞机的安全系数要远远高于汽车。




错误的风险测量方法


1995年,英国医药安全委员会发布了一系列研究结果,服用第三代口服避孕药的人患血栓症的概率是普通人的两倍。这个研究结果很快传遍全世界。医生与药剂师向妇女传达了由预期结论得出的警告信息:意外怀孕与妊辰激增。接下来的一年时间里,仅仅在英格兰和威尔士流产案例预计增加了13,000人次。


尽管这些专家都经过科学和医学培训,但是他们严重忽视或忽略一个结果:绝对风险数量增加一倍才只有7000人次,也远远不及由怀孕与流产导致的血栓症风险。因此,相同的数据有两种描述方式:一是风险率相对增长100%,二是绝对增长数量为7,000。前者很容易占据新闻头条和引起公众跟风。而后者则不会造成太大影响,但是可能会避免很多痛苦。


Gigerenzer的书还有很多这样的故事,如果你有兴趣了解人们解读数字数据的方式及使用(或不使用)这些数字作为决策依据的方式,那么这本书很值得你阅读。事实是,即使经过科学训练,只有极少数人能够正确理解这个领域。因此,我们缺少区分不同风险表达方式及不确定性的能力,也缺乏一些帮助理解所得到结果的培训。对于世界上的一些概念,我们很容易陷入偏见或先入为主的错误理解方式。


当我们从“少量数据”世界(掌握简单算术就足够应付)过渡到充斥大数据统计的世界时,数据误解产生的危害也出现指数增长。无论自助服务商业智能有多厉害,它们也无法轻松扩展变成自助服务商业分析。业务用户(及许多数据科学家)都需要在理解和展示统计数据方面加强自身的能力。




最大的决策动因:潜意识行为


除了技能问题,还有一个更根本的问题,而911事件关于航空旅行方式的态度改变就是一个最好的例子。我将这种现象称为商业不智能(Business unIntelligence),并且在我的同名图书中提出了这个术语。按照西方商业思维方式,智慧几乎可以完全等同于合理和理智思想,特别是在决策过程中。这忽略了大脑的现实情况及其思维过程,其中有90%的想法是无意识发生的。决策很少是由数据驱动的,特别是那些会对个人产生影响或需要快速响应的决策。


心理学家及诺贝尔经济学奖得主Daniel Kahneman在他写的书《快思考与慢思考》中阐述了这个话题,但是他落入唯理性主义者的圈套,后者认为无意识思维源于有意识思维。这样就得出了一些结论:我们很容易作出一些严重错误且非常容易受外界干扰的决策,而且总是在有意识地保护自己。或者更坏的情况是,一些专制ZF可能且总是会“迫使”我们作出一些有利于自身的决策。


当然,自我意识也很重要。然而,如果认为我们新进化的小小前额可以或应该完全超越大多数大脑的长期进化但潜意识发生的感知,那么这是极其短视的。这种感知对于现实世界的决策过程有很多影响——形式包括内在感受、直觉、有根据的揣测和探索,而它们会忽略得到的大部分数据。如果只关注于收集和堆砌不断增多的数据,那么我们就有迷失的风险。



在不确定的世界里,有一些事件是无法预测的,基于数据分析出来的概率只能让人得到一个决策。2008年金融领域发生的事件表明,过份依赖于预测风险模型是灾难性的,因为有一些东西不在模型参数的覆盖范围之内。Gigerenzer指出:“问题在于不正确的风险测量:这些方法错误地假定不确定的世界里有已知的风险。因为这些计算为一个不确定的风险产生了精确的数字,因此它们会产生一个虚假的确定性。”



在决策过程中完全依赖数据驱动或分析工具本身具有内在的危险性。人类决策者所带来的价值是他能够看到环境和理解业务环境。这些洞察力并不能完全由参数来描述。当然,它们也来源于一些信息:思想认识中的旧记忆或新思维模式。但是,它们大多数都基于计算机科学远远无法理解的思维处理模型,计算机还完全无法模拟出思维。这是一个宝贵的东西。

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:大数据分析 数据分析师 数据分析 告诉你 大数据 数据分析师点拨:大数据分析不能告诉你什么? 数据分析师 大数据分析 大数据

回帖推荐

美国队长2 发表于5楼  查看完整内容

疏于总结自己走过的路做过的事就是我的“懒”体现之一,最近看到不少童靴在各种渠道问各种关于数据分析师的问题,比如“快要毕业了想做数据分析师要如何准备面试”,“现在是做XX工作,换工作时想转行做数据分析师应该补充些什么指示”等等,所以决定摆脱拖延症就从总结自己作为一个数据分析师走过的路开始,各位看官觉得有所收益,欢迎点赞,若想拍砖也请求大侠给小女子一些指点。 人类决策者所带来的价值是他能够看到环境和理 ...

https://www.cda.cn/?seo-luntan
高薪就业·数据科学人才·16年教育品牌

沙发
聆听故事city 在职认证  发表于 2016-3-19 16:48:33
明智的人应该谨慎对待,并明确两个问题。一,业务人员在制定特定决策时是否真正理解相关数据,是否曾经以实用且可行的方式向管理层展示了这些数据?二,是否所有决策都有必要在收集“所有数据”之后自动完成?

藤椅
跟着风儿走 在职认证  发表于 2016-3-19 16:49:37
当我们从“少量数据”世界(掌握简单算术就足够应付)过渡到充斥大数据统计的世界时,数据误解产生的危害也出现指数增长。无论自助服务商业智能有多厉害,它们也无法轻松扩展变成自助服务商业分析。业务用户(及许多数据科学家)都需要在理解和展示统计数据方面加强自身的能力。

板凳
放纵我的放纵 在职认证  发表于 2016-3-19 17:10:43
在不确定的世界里,有一些事件是无法预测的,基于数据分析出来的概率只能让人得到一个决策。2008年金融领域发生的事件表明,过份依赖于预测风险模型是灾难性的,因为有一些东西不在模型参数的覆盖范围之内。

报纸
美国队长2 在职认证  发表于 2016-3-19 17:11:42
疏于总结自己走过的路做过的事就是我的“懒”体现之一,最近看到不少童靴在各种渠道问各种关于数据分析师的问题,比如“快要毕业了想做数据分析师要如何准备面试”,“现在是做XX工作,换工作时想转行做数据分析师应该补充些什么指示”等等,所以决定摆脱拖延症就从总结自己作为一个数据分析师走过的路开始,各位看官觉得有所收益,欢迎点赞,若想拍砖也请求大侠给小女子一些指点。

人类决策者所带来的价值是他能够看到环境和理解业务环境。这些洞察力并不能完全由参数来描述。
做好一名数据分析师,我总结下来12个字,懂业务、勤学习、沟通畅、工具熟,具体展开如下图,各位分析大侠们如果持不同观点,还请不吝赐教,小女子先谢过了。

可视化将进一步推动大数据更为广泛的应用将显得尤为有意义:

会有越来越多适合用户使用需要的可视化方法和工具,而越来越多的互联网产品将结合数据给用户提供可视化的数据及服务:比如百度搜索指数、阿里巴巴大数据平台提供了一系列可视化的数据服务等。还有比如现在app们都搞的用户年终数据盘点,比如支付宝的1年用户支付宝记录,以可视化的数据方式让用户能够直观感受到自己使用支付宝1年的情况,并朋友圈等。

并且可视化一定会且正在和移动互联网深度结合,用户通过手机的到可视化的数据并应用到自己的生活中,同样的通过手机也可以参与到数据应用和数据服务中。

从而,将有更多大数据可视化公司涌现出来。


虽然,目前大数据的应用还面临很多挑战,如大数据的安全与隐私令人忧虑、数据权属方面也问题重重。然而,无论是对数据的深度分析推动大数据智能应用和商业智能的发展,还是更广泛、多元的(如互联网金融、健康、教育、智慧城市、企业数据化、工业大数据等)大数据的商业化应用,都预示着大数据生态和产业的发展是颇为值得期待的。

地板
我愿一生孤独 在职认证  发表于 2016-3-19 17:12:23
问题在于不正确的风险测量:这些方法错误地假定不确定的世界里有已知的风险。因为这些计算为一个不确定的风险产生了精确的数字,因此它们会产生一个虚假的确定性。

7
我愿一生孤独 在职认证  发表于 2016-5-17 18:03:41
数据分析和挖掘部门位于科技部门,优点是直接可以了解所有数据,利用最新的大数据计算分析技术来进行数据分析和建模,数据视野好。面对全局数据建立数据采集和分析系统,系统复用程度高,降低重复投资,效率高。但是团队人员商业敏感度低,过度关注技术和架构,重视技术的领先和处理效率,数据商业敏感度低,不重视数据商业化场景,对业务理解程度不够,支持力度不如前者。

8
临时同居 在职认证  发表于 2016-5-24 16:29:01
数据分析师将杂乱的数据进行整理后,将数据以不同的形式展现给产品经理、运营人员、营销人员、财务人员、业务人员等。提出基于数据的结果和分析建议,完成数据从原始到商业化应用到关键一步,数据分析师的数据敏感度、商业敏感度、分析角度、表达方式对于商业决策很重要。

9
我心孤独 在职认证  发表于 2016-5-24 16:44:53
随着企业对数据价值的认识越来越高,数据分析类项目也随之增加,尤其是近一段时间大数据时代的到来,数据分析已经是必不可少的内容。其中数据分析结果以报表形式呈现给用户,是各项目的重要组成部分。

10
我有我的love 在职认证  发表于 2016-5-24 16:53:12
大数据营销是基于多平台的大量数据,依托大数据技术的基础上,应用于互联网广告行业的营销方式。大数据营销衍生于互联网行业,又作用于互联网行业。依托多平台的大数据采集,以及大数据技术的分析与预测能力,能够使广告更加精准有效,给品牌企业带来更高的投资回报率。

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2025-12-31 21:57