sungmoo 发表于 2009-5-24 10:15 
*stata的命令(z为0-1变量):treatreg y x1-xn, tr(z=w1-wm) two*等价于以下命令:prob z w1-wmpredict gw, xbg lambda=normalden(gw)/normal(gw) if z==1replace lambda=-normalden(gw)/normal(-gw) if z==0reg y z x1-xn lambda
sungmoo版主,你好。
我又遇到一个关于treatment的问题,我发现按照你所说的两个步骤得到的结果,与采用treatreg直接得到的结果,系数估计是一样的,但系数的标准差不一样,从而导致显著性水平就不同了,而这个显著性水平却很重要。
我用附件中的数据得到的两种回归结果,显著性水平就大有差异。不知道应该采用哪一种?非常感谢!
两步回归的结果显示:
Source | SS df MS Number of obs = 278
-------------+------------------------------ F( 2, 275) = 11.54
Model | .126873484 2 .063436742 Prob > F = 0.0000
Residual | 1.51133969 275 .005495781 R-squared = 0.0774
-------------+------------------------------ Adj R-squared = 0.0707
Total | 1.63821317 277 .005914127 Root MSE = .07413
------------------------------------------------------------------------------
y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
x | 5.154239 1.074254 4.80 0.000 3.039433 7.269045
imr | -3.142532 .6553038 -4.80 0.000 -4.432582 -1.852483
_cons | -3.358233 .7226233 -4.65 0.000 -4.780809 -1.935657
------------------------------------------------------------------------------
直接的treatreg:
Treatment-effects model -- two-step estimates Number of obs = 278
Wald chi2(1) = 0.02
Prob > chi2 = 0.8822
------------------------------------------------------------------------------
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
y |
x | 5.154239 34.78643 0.15 0.882 -63.02591 73.33439
_cons | -3.358233 23.39995 -0.14 0.886 -49.2213 42.50483
------------+----------------------------------------------------------------
x |
z | -.0085972 .0591068 -0.15 0.884 -.1244444 .1072501
_cons | .4687972 .1673333 2.80 0.005 .1408299 .7967644
-------------+----------------------------------------------------------------
hazard |
lambda | -3.142532 21.21947 -0.15 0.882 -44.73194 38.44687
-------------+----------------------------------------------------------------
rho | -1.00000
sigma | 2.4184805
lambda | -3.1425323 21.21947
------------------------------------------------------------------------------