楼主: Lisrelchen
4217 19

[Ipython Notebook]Introduction to Machine Learning with scikit-learn [推广有奖]

  • 0关注
  • 62粉丝

VIP

已卖:4192份资源

院士

67%

还不是VIP/贵宾

-

TA的文库  其他...

Bayesian NewOccidental

Spatial Data Analysis

东西方数据挖掘

威望
0
论坛币
50278 个
通用积分
83.5106
学术水平
253 点
热心指数
300 点
信用等级
208 点
经验
41518 点
帖子
3256
精华
14
在线时间
766 小时
注册时间
2006-5-4
最后登录
2022-11-6

楼主
Lisrelchen 发表于 2016-8-19 02:25:36 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

Learning from data is close to what we do, as humans. From our experience, we intuitively learn general facts and relations about the world, even if we don't fully understand its complexity. The increasing computational power of computers makes them able to learn from data, too. That's the heart of machine learning, a modern and fascinating branch of artificial intelligence, computer science, statistics, and applied mathematics.

This featured recipe is a hands-on introduction to the most fundamental concepts in machine learning. These concepts are routinely used by data scientists. We will illustrate them withscikit-learn, a popular and user-friendly Python package for machine learning.

本帖隐藏的内容

10.pdf (5.05 MB)


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:scikit-learn introduction troduction Notebook Learning understand complexity experience computers learning

本帖被以下文库推荐

沙发
Lisrelchen 发表于 2016-8-19 02:26:35
  1. 1.First, let's make all the necessary imports.
  2. import numpy as np
  3. import scipy.stats as st
  4. import sklearn.linear_model as lm
  5. import matplotlib.pyplot as plt
  6. %matplotlib inline
  7. 2.We now define the deterministic function underlying our generative model.
  8. f = lambda x: np.exp(3 * x)
  9. 3.We generate the values along the curve on [0,2][0,2].
  10. x_tr = np.linspace(0., 2, 200)
  11. y_tr = f(x_tr)
  12. 4.Now, let's generate our data points within [0,1][0,1]. We use the function ff and we add some Gaussian noise.
  13. x = np.array([0, .1, .2, .5, .8, .9, 1])
  14. y = f(x) + np.random.randn(len(x))
  15. 5.Let's plot our data points on [0,1][0,1].
  16. plt.figure(figsize=(6,3));
  17. plt.plot(x_tr[:100], y_tr[:100], '--k');
  18. plt.plot(x, y, 'ok', ms=10);
复制代码

藤椅
fengyg 企业认证  发表于 2016-8-19 07:40:40
kankan

板凳
hwj626 发表于 2016-8-20 01:21:31

kankan

报纸
zhubao爱nannan 发表于 2016-8-21 14:45:26
期待期待。。。。。。。。。。。。

地板
大鹏展翅2009 发表于 2016-8-25 22:27:17
check it out and thanks, buddy

7
rhine123 发表于 2016-8-27 09:16:16
GOPOOOOOOOOOOOOOOOOOOD

8
andrewfu1988 发表于 2016-9-5 22:38:57
thanks for sharing

9
斜白 发表于 2016-9-5 23:34:49
aaafg
j

10
wu6yuan8 在职认证  发表于 2016-9-7 14:19:00
like this too
已有 1 人评分经验 收起 理由
bfzldh + 50 鼓励积极发帖讨论

总评分: 经验 + 50   查看全部评分

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-6 05:05