楼主: xianhua_meng
2445 3

[学科前沿] Short Course On Missing Data--University of Wisconsin--ShaoJun [推广有奖]

  • 0关注
  • 0粉丝

已卖:2份资源

小学生

85%

还不是VIP/贵宾

-

威望
0
论坛币
256 个
通用积分
0
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
58 点
帖子
8
精华
0
在线时间
11 小时
注册时间
2006-1-11
最后登录
2014-5-6

楼主
xianhua_meng 发表于 2009-7-2 22:24:58 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
华东师范大学统计系举办的2009暑期短课程讲义。主讲是威斯康星大学统计系教授邵军博士。
内容:
1. Introduction
2. Missing Mechanisms
(a) Missing completely at random
(b) Missing at random (ignorable missing)
(c) Covariate-dependent (unconfounded) missing
(d) Nonignorable missing
(e) Informative missing in longitudinal data
3. Ignorable Missing
(a) Parametric likelihood-based analysis under MAR
i. Bivariate normal data with one variable having
missing values
ii. Multivariate normal data with monotone missing
iii. EM algorithm
iv. Theory of the EM algorithm
v. Information and variance estimation
(b) Semi- and non-parametric methods under covariatedependent
missing
i. Linear models
ii. Nonparametric regression
iii. Re-weighting
iv. Empirical likelihood
v. Pseudo empirical likelihood
(c) Imputation methodology
i. Deterministic imputation
ii. Random imputation
(d) Variance estimation and inference
i. Multiple imputation
ii. Direction derivation with single imputation
iii. Resampling methods with single imputation
4. Nonignorable Missing
(a) Parametric likelihood approach
(b) Semi-parametric methods
(c) Empirical likelihood approach
(d) Pattern-mixture models
5. Longitudinal Data with Missing Values
(a) Informative missing
i. Parametric likelihood approach
ii. ACM (approximate conditional model)
(b) Grouping
(c) Pattern mixture
(d) Longitudinal imputation
i. Monotone missing
ii. Non-monotone missing
6. Dropout in Longitudinal Studies
(a) Treatment effect in a clinical trial
i. Study-end treatment effect (the traditional approach)
ii. Last-observed treatment effect (a new approach)
(b) Last observation carry forward (LOCF)
(c) Last observation analysis
7. Others
(a) Measurement error and missing data
(b) Missing data in covariates
(c) Omitted covariates
8. Concluding Remarks
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:University Universit Wisconsin missing Course completely 师范大学 威斯康星 normal 博士

沙发
析人 发表于 2009-7-2 22:38:36
Expensive!

藤椅
爱萌 发表于 2009-7-2 23:33:55
是不是太过分了
这本是免费的东西,你根本不需要花费时间的
听课的都知道了
地址http://www.sfs.ecnu.edu.cn/pdf/SC_09_missingdata.pdf
直接下载
最恨对我说谎或欺骗我的人

板凳
天狮 发表于 2011-4-3 13:48:37
非常好的资料、通俗易懂不罗嗦

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-30 23:02