楼主: 刘彦楼
1723 3

[学科前沿] 受测者潜在特质非正态分布时的IRT参数估计方法经典文献推荐之四 [推广有奖]

  • 0关注
  • 18粉丝

版主

已卖:264份资源

讲师

20%

还不是VIP/贵宾

-

威望
0
论坛币
-52646844 个
通用积分
36.2240
学术水平
65 点
热心指数
46 点
信用等级
40 点
经验
13628 点
帖子
370
精华
1
在线时间
320 小时
注册时间
2009-5-11
最后登录
2023-2-10

楼主
刘彦楼 发表于 2017-3-10 22:13:09 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Rasch Model Parameter Estimation in the Presence of a Nonnormal Latent Trait Using a Nonparametric Bayesian Approach

Holmes Finch and Julianne M. Edwards   

Abstract

Standard approaches for estimating itemresponse theory (IRT) model parameters generally work under the assumption thatthe latent trait being measured by a set of items follows the normaldistribution. Estimation of IRT parameters in the presence of nonnormal latenttraits has been shown to generate biased person and item parameter estimates. Anumber of methods, including Ramsay curve item response theory, have beendeveloped to reduce such bias, and have been shown to work well for relativelylarge samples and long assessments. An alternative approach to the nonnormal latenttrait and IRT parameter estimation problem, nonparametric Bayesian estimation approach,has recently been introduced into the literature. Very early work with thismethod has shown that it could be an excellent option for use when fitting theRasch model when assumptions cannot be made about the distribution of the modelparameters. The current simulation study was designed to extend research in thisarea by expanding the simulation conditions under which it is examined and to comparethe nonparametric Bayesian estimation approach to the Ramsay curve item responsetheory, marginal maximum likelihood, maximum a posteriori, and the BayesianMarkov chain Monte Carlo estimation method. Results of the current study supportthat the nonparametric Bayesian estimation approach may be a preferred optionwhen fitting a Rasch model in the presence of nonnormal latent traits and itemdifficulties, as it proved to be most accurate in virtually all scenarios thatwere simulated in this study.


Keywords
item response theory, Rasch model, nonnormal latent trait, nonparametric Bayes, parameter estimation


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:非正态分布 经典文献 正态分布 参数估计 非正态

已有 1 人评分经验 论坛币 收起 理由
jiandong4388 + 60 + 20 精彩帖子

总评分: 经验 + 60  论坛币 + 20   查看全部评分

沙发
jiandong4388(未真实交易用户) 学生认证  发表于 2017-3-11 10:48:34 来自手机

回帖奖励 +1

非参数贝叶斯方法。不错学习。但是似乎贝叶斯原理一直不是很火,用的人也不多。因为相对较难。
已有 1 人评分学术水平 热心指数 收起 理由
刘彦楼 + 5 + 5 精彩帖子

总评分: 学术水平 + 5  热心指数 + 5   查看全部评分

藤椅
刘彦楼(未真实交易用户) 发表于 2017-3-11 20:13:01
jiandong4388 发表于 2017-3-11 10:48
非参数贝叶斯方法。不错学习。但是似乎贝叶斯原理一直不是很火,用的人也不多。因为相对较难。
相对较为简单,只是计算量比较大,不适合大样本量的数据。更不适用于大数据。

板凳
xiexie1111(真实交易用户) 发表于 2017-9-4 23:51:27
thanks for your sharing, xie xie

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-27 15:30