楼主: ReneeBK
1481 9

[GitHub]Large Scale Machine Learning with Python [推广有奖]

  • 1关注
  • 62粉丝

VIP

已卖:4897份资源

学术权威

14%

还不是VIP/贵宾

-

TA的文库  其他...

R资源总汇

Panel Data Analysis

Experimental Design

威望
1
论坛币
49635 个
通用积分
55.7537
学术水平
370 点
热心指数
273 点
信用等级
335 点
经验
57805 点
帖子
4005
精华
21
在线时间
582 小时
注册时间
2005-5-8
最后登录
2023-11-26

楼主
ReneeBK 发表于 2017-4-22 04:35:57 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Large Scale Machine Learning with Python

This is the code repository for Large Scale Machine Learning with Python, published by Packt. It contains all the supporting project files necessary to work through the book from start to finish.

Instructions

The execution of the code examples provided in this book requires an installation of Python 2.7 or higher versions on macOS, Linux, or Microsoft Windows. The examples throughout the book will make frequent use of Python's essential libraries, such as SciPy, NumPy, Scikit-learn, and StatsModels, and to a minor extent, matplotlib and pandas, for scientific and statistical computing. We will also make use of an out-of-core cloud computing application called H2O. This book is highly dependent on Jupyter and its Notebooks powered by the Python kernel. We will use its most recent version, 4.1, for this book. The first chapter will provide you with all the step-by-step instructions and some useful tips to set up your Python environment, these core libraries, and all the necessary tools.

Related books

本帖隐藏的内容

https://github.com/PacktPublishing/Large-Scale-Machine-Learning-With-Python



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Learning machine earning GitHub python supporting Microsoft necessary essential execution

本帖被以下文库推荐

沙发
ReneeBK 发表于 2017-4-22 04:38:19
  1. Non-linear & faster with Vowpal Wabbit
  2. Useful functions
  3. In [1]:
  4. import numpy as np

  5. def sigmoid(x):
  6.     return 1. / (1. + np.exp(-x))

  7. def apply_log(x):
  8.     return np.log(x + 1.0)

  9. def apply_exp(x):
  10.     return np.exp(x) - 1.0
  11. Useful dataset examples
  12. In [37]:
  13. with open('house_dataset','wb') as W:
  14.     W.write("0 | price:.23 sqft:.25 age:.05 2006\n")
  15.     W.write("1 2 'second_house | price:.18 sqft:.15 age:.35 1976\n")
  16.     W.write("0 1 0.5 'third_house | price:.53 sqft:.32 age:.87 1924\n")

  17. with open('house_dataset','rb') as R:
  18.     for line in R:
  19.         print line.strip()
  20. 0 | price:.23 sqft:.25 age:.05 2006
  21. 1 2 'second_house | price:.18 sqft:.15 age:.35 1976
  22. 0 1 0.5 'third_house | price:.53 sqft:.32 age:.87 1924
  23. A way to call VW from Python
  24. In [2]:
  25. import subprocess

  26. def execute_vw(parameters):
  27.     execution = subprocess.Popen('vw '+parameters, shell=True, stderr=subprocess.PIPE)
  28.     line = ""
  29.     history = ""
  30.     while True:
  31.         out = execution.stderr.read(1)
  32.         history += out
  33.         if out == '' and execution.poll() != None:
  34.             print '------------ COMPLETED ------------\n'
  35.             break
  36.         if out != '':
  37.             line += out
  38.             if '\n' in line[-2:]:
  39.                 print line[:-2]
  40.                 line = ''
  41.     return history.split('\r\n')


  42. params = "house_dataset"
  43. results = execute_vw(params)
复制代码

藤椅
tmdxyz 发表于 2017-4-22 05:02:52
Large Scale Machine Learning with Python

板凳
h2h2 发表于 2017-4-22 05:56:20
谢谢分享

报纸
huhuhuhu 发表于 2017-4-22 06:27:40
谢谢分享

地板
fengyg 企业认证  发表于 2017-4-22 08:16:26
kankan

7
yazxf 发表于 2017-4-22 08:40:40
谢谢资料分享!

8
franky_sas 发表于 2017-4-22 14:21:06

9
william9225 学生认证  发表于 2017-4-22 22:30:01 来自手机
谢谢分享

10
wenwendog 发表于 2017-5-3 11:26:11
thanks

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2026-1-4 09:47