楼主: 人工智能-AI
1169 0

基于机器学习的并行文件系统性能预测 [推广有奖]

  • 0关注
  • 10粉丝

会员

学术权威

71%

还不是VIP/贵宾

-

威望
0
论坛币
25 个
通用积分
0.0584
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
37770 点
帖子
3776
精华
0
在线时间
853 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
人工智能-AI 在职认证  发表于 2017-9-15 13:00:05 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:并行文件系统能有效解决高性能计算系统的海量数据存储和I/O瓶颈问题.由于影响系统性能的因素十分复杂,如何有效地评估系统性能并对性能进行预测成为一个潜在的挑战和热点.以并行文件系统的性能评估和预测作为研究目标,在研究文件系统的架构和性能因子后,设计了一个基于机器学习的并行文件系统预测模型,运用特征选择算法对性能因子数量进行约简,挖掘出系统性能和影响因子之间的特定的关系进行性能预测.通过设计大量实验用例,对特定的Lustre文件系统进行性能评估和预测.评估和实验结果表明:threads/OST、对象存储器(OSS)的数量、磁盘数目和RAID的组织方式是4个调整系统性能最重要因子,预测结果的平均相对误差能控制在25.1%~32.1%之间,具有较好预准确度.

原文链接:http://www.cqvip.com/QK/94913X/201107/38726054.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:机器学习 学习的 系统性 threads thread 并行文件系统 性能评估 性能预测 性能模型 机器学习

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-2 01:05