楼主: DL-er
1073 0

基于机器学习模型的沙漠腹地地下水含盐量变化过程及模拟研究 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.0435
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38540 点
帖子
3853
精华
0
在线时间
813 小时
注册时间
2017-9-5
最后登录
2018-6-30

楼主
DL-er 在职认证  发表于 2017-9-16 01:20:06 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:为了研究塔克拉玛干沙漠腹地的地下水盐分变化规律,模拟地下水盐分变化过程,评价适合该区域的地下水变化规律的模型。通过对研究区蒸发量、降水量、气温、气压、地下水位、地下水电导率数据的统计分析,揭示了地下水含盐量及其影响因素的特征;使用GP模型、GPLVM模型和BP人工神经网络模型以及综合模型,模拟了气候变化和人类活动双重影响下的地下水含盐量变化过程,并评价了模型的模拟结果。研究结果表明:(1)研究区地下水流动系统主要受气候变化和人类活动的影响,地下水位在局部地区随开采过程呈现波动变化。地下水位变化过程与气压的变化规律相一致;而气温和蒸发量的季节变化规律相一致。地下水盐分含量呈上升趋势。(2)GP模型对于地下水含盐量的预测效果最好;GPLVM模型对于已知地下水含盐量条件下,与其他环境因素进行多元回归分析的拟合效果最好。而GP、GPLVM和BP人工神经网络模型的综合模型,对于包括模型训练和模型预测的全体数据集的拟合和预测效果最好。

原文链接:http://www.cqvip.com/QK/90772X/201318/47274495.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:机器学习 地下水 BP人工神经网络 人工神经网络 神经网络模型 地下水含盐量 高斯过程 高斯过程隐变量模型 人工神经网络 沙漠腹地

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-5 14:17