楼主: a智多星
1029 0

一种优化的用于中文分词的CRF机器学习模型 [推广有奖]

  • 0关注
  • 14粉丝

会员

学术权威

72%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.1414
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38160 点
帖子
3814
精华
0
在线时间
830 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
a智多星 在职认证  发表于 2017-9-16 03:20:02 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:目前效果最好的中文分词方法是基于字标注的机器学习方法。作为中文分词领域使用最广泛并且效果最好的机器学习模型,条件随机场(CRF)模型进行机器学习的代价很高,非常耗费时间和内存。通过对条件随机场机器学习模型的改进,增加模型导出功能和使其支持预定义Tag,降低了机器学习的代价。使用MSRA 2005开放测试语料库和6词位标注集,以及赵海博士提出的针对6词位的特征模板做实验,实验数据表明,改进后的模型缩短了机器学习的训练时间,提高了分词的速度,对F值也有小幅提高。

原文链接:http://www.cqvip.com/Main/Detail.aspx?id=33711048

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:机器学习 中文分词 detail cqvip Etail 条件随机场 中文分词 字标注

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-3 14:17