楼主: 论文库
812 0

机器学习中知识动态获取在函数逼近中的探究 [推广有奖]

  • 0关注
  • 13粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
5 个
通用积分
0.0363
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38440 点
帖子
3839
精华
0
在线时间
836 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
论文库 在职认证  发表于 2017-9-16 01:00:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:本文将机器学习中的知识动态获取体现在神经网络的方法中,从而研究神经网络的函数逼近方法,首先分析了神经网络在函数逼近中应用的相关理论,然后将BP神经网络应用于函数的逼近中并通过实验得到理想的效果。最后本文首次提出将GRNN(广义回归神经网络)运用于实际的函数逼近之中,得到了误差极小(接近于零)的完美逼近结果,并且通过实验验证了该神经网络训练速度快和非线性映射能力很强的优点。

原文链接:http://www.cqvip.com/Main/Detail.aspx?id=35374492

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:机器学习 detail BP神经网络 cqvip Etail 函数逼近 BP神经网络 GRNN网络 误差极小

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-3 20:49