楼主: 人工智能-AI
1011 2

基于集成学习的支持向量回归预测模型 [推广有奖]

  • 0关注
  • 10粉丝

会员

学术权威

71%

还不是VIP/贵宾

-

威望
0
论坛币
25 个
通用积分
0.0584
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
37770 点
帖子
3776
精华
0
在线时间
853 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
人工智能-AI 在职认证  发表于 2017-9-17 15:20:02 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:作为统计机器学习中最为流行的算法之一,支持向量回归(SVR)在小样本、非线性、高维数据预测中有着许多优越的性质和实验表现。然而,SVR的复杂度直接由训练样本的尺寸n决定(其时间和空间复杂度分别为O(n2)、O(n3)),为此提出了一种基于集成的SVR预测模型。该模型将训练样本多次随机地分割为代表数据子集和验证数据子集,从而建立多个简化的SVR子模型及其评价,再利用组合法形成最终的集成预测器。最后,江西省某县的天气、日尖峰负荷数据用以检验该模型的适用性。

原文链接:http://www.cqvip.com/QK/97218A/201603/78678366504849544851484950.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:预测模型 回归预测 学习的 cqvip 机器学习 支持向量回归 集成学习 预测

沙发
钱学森64 发表于 2017-9-17 20:25:04
谢谢分享

藤椅
agan06 发表于 2017-10-22 07:47:27
谢谢分享!!!!!!

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-28 14:10