楼主: AIworld
706 0

基于逆概念频率的词语相似度计算 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1363
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2017-9-23 17:40:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:词语相似性度量在服务选择、自然语言处理、文献检索等领域具有重要的作用,目前通用的词语相似度计算方法是利用《知网》对词的概念解释得出词语之间相似度.对《知网》结构进行分析,认为利用《知网》计算词的相似度的方法中概念的4项基本结构的权重应该动态产生,并提出区分度作为衡量4项基本结构的动态权重.在分析现有研究基础上,借鉴逆文档频率(IDF)权重计算思想,认为义原的区分度与义原在所有概念的相应位置中出现次数成反比,提出了一种基于义原出现频次的义原权重计算方法:逆概念频率(inverse concept frequency,ICF).通过分析概念的组织结构,计算第一基本义原结构、其他基本义原结构、关系义原结构、关系符号结构中各义原的ICF权重,将4个基本结构中的最大义原ICF权重作为基本结构的ICF权重.利用动态ICF值逼近基本结构的区分度,进而计算词语相似度.通过对真实数据的实验对比可以看出ICF算法能有效提高计算词语相似度的准确率.相比较传统算法平均前160个词准确率从30.74%提高到72.28%,平均召回率从15.87%提高到49.64%.

原文链接:http://www.cqvip.com/qk/95448x/201502/664076689.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:相似度 Frequency concept inverse cqvip 知网 词语相似度 逆概念频率 义原权重

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-2 12:52