楼主: 论文库
505 0

基于改进BP神经网络的手写字符识别 [推广有奖]

  • 0关注
  • 13粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
5 个
通用积分
0.0363
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38440 点
帖子
3839
精华
0
在线时间
836 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
论文库 在职认证  发表于 2017-9-25 23:40:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:针对标准反向传播(BP,Back Propagation)神经网络算法收敛速度慢、易陷入局部极小等缺点,采用附加动量法与学习速率自适应调整相结合策略对神经网络初始参数进行设置。通过在权重计算公式中加入动量项,降低神经网络对误差曲面局部调节的敏感性,有效抑制其陷于局部极小。学习速率根据总误差的变化进行自适应调整,可以有效地缩短学习时间,加快收敛速度。将该改进算法应用于数字、英文字母以及简单汉字的手写字符识别系统中,进行了有无动量、有无噪声等实验,结果表明该方法与传统BP算法相比识别精度较高、训练时间较短且具有较强的鲁棒性。

原文链接:http://www.cqvip.com/QK/94433X/201105/37981536.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:BP神经网络 神经网络 神经网 Propagation cqvip 模式识别 BP神经网络 算法改进 手写字符识别 附加动量

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-26 03:20