楼主: a智多星
581 0

基于小波包和模糊自适应共振神经网络的变压器绕组状态识别 [推广有奖]

  • 0关注
  • 14粉丝

会员

学术权威

72%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.1414
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38160 点
帖子
3814
精华
0
在线时间
830 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
a智多星 在职认证  发表于 2017-9-28 12:40:03 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:变压器振动信号中包含了大量状态信息,但难以从中提取有效特征进行绕组松动状态识别.为此,提出了基于模糊自适应共振理论(fuzzy adaptive resonance theory,Fuzzy-ART)的变压器绕组松动状态识别方法.首先,设置9种绕组松动状态并进行短路实验,测取油箱表面振动信号;然后对振动信号进行4层小波包变换,提取有效测点状态特征频带的小波包能量构成特征向量;最后将特征向量作为Fuzzy-ART神经网络的输入,对不同绕组松动状态进行识别.实验结果表明,基于小波包的Fuzzy-ART神经网络能对绕组松动状态进行快速、稳定分类,可用于变压器绕组松动状态的在线监测与诊断.

原文链接:http://d.wanfangdata.com.cn/Periodical/gddl201707016

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:神经网络 变压器 神经网 wanfangdata resonance 变压器 绕组松动 振动信号 小波包能量 Fuzzy-ART神经网络

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-3 23:56