楼主: DL-er
521 0

基于机器学习的动态信誉评估模型研究 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.0435
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38540 点
帖子
3853
精华
0
在线时间
813 小时
注册时间
2017-9-5
最后登录
2018-6-30

楼主
DL-er 在职认证  发表于 2017-9-29 01:00:02 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:为在开放网络环境中建立资源消费者(用户)和资源提供者(主机)之间的信任关系,提出基于机器学习的动态信誉评估模型 .模型中用户的信誉级别可以根据其行为和一些其他监测数据动态变化,而资源的信誉级别也可以根据用户对资源所提供服务的评价动态变化 .给出了用于生成评估规则和信誉级别的模糊信誉级别评估算法(FTEA),算法采用基于规则的机器学习方法,具有从大量输入数据中自学习以获取评估规则的能力 .实验结果表明,1000组输入数据能够生成理想的规则库,并且算法执行时间随输入判定因素数目成指数形式增长,因此需要选择5~6个因素和1000个左右的样本数据以进行系统实现 .

原文链接:http://d.wanfangdata.com.cn/Periodical/jsjyjyfz200702005

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:机器学习 学习的 wanfangdata periodic wanfang 机器学习 信誉 信誉级别 模糊信誉综合 网络安全

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-6 00:02