楼主: 人工智能-AI
659 0

当前知识抽取的主要技术方法解析 [推广有奖]

  • 0关注
  • 10粉丝

会员

学术权威

71%

还不是VIP/贵宾

-

威望
0
论坛币
25 个
通用积分
0.0584
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
37770 点
帖子
3776
精华
0
在线时间
853 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
人工智能-AI 在职认证  发表于 2017-10-28 14:00:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:对MnM、KIM、Text20nto、Amilcare、Melita等具有知识抽取功能的系统所应用的技术方法进行解析。提出在当前知识抽取技术中,机器学习和自然语言分析两大思路各自得到较大发展,并且在相互融合、相互借鉴中受益。在基于机器学习的知识抽取方面,出现以自适应信息抽取(Adaptive IE)、开放信息抽取(Open IE)为代表的新思路,并且有向自动本体学习(Ontology Learning)方向发展的趋势;在基于自然语言分析的知识抽取方面,基于模式标注、语义标注的方法得到广泛关注和进一步完善,并且有向基于Ontology的信息抽取(OBIE)方向发展的趋势。此外,为减少Ontology建设成本,让人们可以利用简单的自然语言构建Ontology,基于受控语言的信息抽取(CLIE)技术也得到一定的关注。

原文链接:http://www.cqvip.com//QK/93371X/200808/28126725.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Ontology Adaptive Learning Adaptiv earning 知识抽取 机器学习 自然语言分析 本体

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-27 09:12