楼主: DL-er
484 0

基于单类支持向量机的织物瑕疵检测研究 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.0435
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38540 点
帖子
3853
精华
0
在线时间
813 小时
注册时间
2017-9-5
最后登录
2018-6-30

楼主
DL-er 在职认证  发表于 2017-12-28 05:00:02 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:为了实现在工业环境下的织物瑕疵在线检测,提出了一种基于单类支持向量机(OCSVM)的织物异常纹理检测方法。通过利用CCD采集织物图像,滤除图像噪声后提取了图像小区域窗口子图像特征;通过实验寻找了两组有效的特征向量,对特征值进行了归一化和主成份分析降维后导入支持向量机分类器中进行了训练,利用单类SVM对异常区域进行了定位和标记。通过对分别利用两组特征向量识别出的图像结果进行组合得到了最后的瑕疵区域。实验结果表明,该算法能够正确地对多种瑕疵进行识别,并能较大程度降低误检率和漏检率;同时,能够有效解决生产实际中瑕疵训练样本难以获取的问题,对未知的待测样本有较好的推广性,可以适应工业检测的要求。

原文链接:http://www.cqvip.com//QK/93938X/201602/667928490.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:支持向量机 向量机 主成份分析 cqvip 特征向量 织物 瑕疵检测 机器学习 支持向量机

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-11 17:53