楼主: AIworld
547 0

一种可减少训练时间的分层并行支持向量机方法 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1363
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2018-1-28 05:20:03 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:基于支持向量的本质和并行计算方法,提出了一种新的分层并行的机器学习方法以加速支持向量机的训练过程.该方法首先按照分而治之的思想将原分类问题分成若干子问题,然后将支持向量机的训练过程分解成级联的两个层次,在每层采用并行的方法训练各个子支持向量机.各层训练集中的非支持向量被逐步筛选掉,交叉合并的规则保证问题的一致性.仿真结果表明该方法在保证分类器推广能力的同时,缩短了训练支持向量机的时间.http://www.cqvip.com//QK/87671X/200501/15245418.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:支持向量机 向量机 cqvip HTML HTTP 分层筛选 支持向量机 交叉合并

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-20 23:37