楼主: a智多星
455 0

一种恶意代码特征选取和建模方法 [推广有奖]

  • 0关注
  • 14粉丝

会员

学术权威

72%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.1414
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38160 点
帖子
3814
精华
0
在线时间
830 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
a智多星 在职认证  发表于 2017-12-28 10:00:10 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:针对恶意代码分析检测中静态分析技术难以检测变形、多态代码的问题,提出一种提取恶意代码语义动态特征的方法。该方法在虚拟环境下提取恶意代码动态特征,从而达到保护物理机的目的,提取出的原始特征经过进一步的筛选处理,得到各个代码样本的API调用序列信息。为了使得特征更加有效,改进传统n-gram模型,添加n-gram频次信息以及各API间的依赖关系,构建改进的n-gram模型。实验结果分析部分采用机器学习方法,分别使用了决策树、K近邻、支持向量机、贝叶斯网络等分类器对选定的样本特征进行10折交叉验证。实验结果显示该特征选取在决策树J48下的检测效果最好,可以有效检测采用混淆、多态技术的恶意代码。

原文链接:http://www.cqvip.com//QK/90976X/201508/665815853.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:贝叶斯网络 支持向量机 cqvip gram HTTP 恶意代码 动态分析 序列特征 机器学习

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-2 10:43