楼主: AIworld
683 0

基于共同评分数量及差异度的协同过滤推荐算法 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1363
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2017-12-29 07:20:02 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:协同过滤推荐算法是应用最广泛、最成功的推荐算法之一,该算法的核心是计算用户或项目相似度矩阵.首先分析了经典的相似度度量方法存在的缺陷,即在数据稀疏时会严重影响推荐结果.针对上述问题,提出一种基于用户间的共同评分数量及评分差异度的相似度度量方法,可以缓解数据稀疏对推荐结果的影响.选择Movie Lens站点提供的著名电影评分集作为实验数据并采用五折交叉法选取测试数据,分别将本算法和基于项目的协同过滤推荐算法、基于用户的协同过滤推荐算法进行对比,结果显示:采用新相似度所得到的推荐结果在一定程度上要优于上述2种经典相似度度量方法所得到的推荐结果.

原文链接:http://www.cqvip.com//QK/89363X/201601/668347073.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:推荐算法 协同过滤 Movie cqvip 度量方法 机器学习 共同评分 评分差异度 相似度度量方法 协同过滤

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-30 20:38