楼主: DL-er
677 0

基于多样性密度的多示例学习方法 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.0435
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38540 点
帖子
3853
精华
0
在线时间
813 小时
注册时间
2017-9-5
最后登录
2018-6-30

楼主
DL-er 在职认证  发表于 2017-12-31 07:40:03 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:结合多样性密度和带负类的支持向量数据描述,提出了一种能够有效解决多示例问题的算法:MIL-NSVDD_DD。该算法首先通过多样性密度算法找出多示例问题中最优示例模型,然后通过使用带负类的支持向量数据描述对示例模型进行训练,以得到最终的分类器,用得到的分类器再对新包进行预测。最后通过实验表明了该算法的有效性。

原文链接:http://www.cqvip.com//QK/92874X/201207/42919988.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:学习方法 多样性 cqvip HTML HTTP 多示例学习 多样性密度 支持向量数据描述 机器学习

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-23 03:46