楼主: 人工智能-AI
520 0

基于类均值向量及指数分布的流量行为特征分析 [推广有奖]

  • 0关注
  • 10粉丝

会员

学术权威

71%

还不是VIP/贵宾

-

威望
0
论坛币
25 个
通用积分
0.0584
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
37770 点
帖子
3776
精华
0
在线时间
853 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
人工智能-AI 在职认证  发表于 2018-1-1 19:00:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:引入类均值向量度量及αβ指数分布方法,旨在提高分类正确率的基础上,克服由于抽样而带来的对分类结果的影响。利用流记录NOC—SET为DATASET,并以NETFLOW固有的测度和少量扩展测度为属性,利用所提出的FBRI(Flow behavior identification)属性选择算法对经典的机器学习算法进行流量识别。实验结果表明:任意比例的抽样对于采用FBRI属性选择的评估结果基本一致,并且利用FBRI属性选择算法可以提高应用识别正确率。

原文链接:http://www.cqvip.com//QK/90976X/201111/39929339.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:均值向量 指数分布 Behavior dataset cation 类均值向量 αβ指数分布方法 Netflow 机器学习

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-30 18:44