楼主: DL-er
554 1

主动贝叶斯分类方法研究 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.0435
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38540 点
帖子
3853
精华
0
在线时间
813 小时
注册时间
2017-9-5
最后登录
2018-6-30

楼主
DL-er 在职认证  发表于 2018-1-2 03:20:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:在对实际数据进行分类求解时,往往会遇到大量未带类别标注的样本,现有的经典分类方法常采用先标注缺失样本,再进行分类,存在耗时且分类精度差等问题.为此,提出一种基于主动学习思想贝叶斯分类方法RANB. 引入主动学习旨在减少评价样本所需代价,提高分类器性能. RANB方法在主动学习策略的基础上融入条件熵和分类损失的思想,可以有效抑制不确定样本所带来的误差.实验表明,该方法与朴素贝叶斯分类器等经典方法相比,在保证分类性能的前提下,可有效地减少学习所需的样本数量,尤其是对于未带类别标志的样本,更是有其优越性.

原文链接:http://www.cqvip.com//QK/94913X/2007z2/1001097104.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:贝叶斯分类 方法研究 贝叶斯 朴素贝叶斯 cqvip 数据挖掘 机器学习 朴素贝叶斯分类器 主动学习 条件熵

沙发
钱学森64 发表于 2018-1-2 10:05:50
谢谢分享

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-26 02:54