楼主: AIworld
521 0

基于改进的类别分布特征选择方法 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1434
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2018-1-5 14:40:02 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:随着网络上非平衡数据的大量涌现,使得对非平衡数据分类的研究成为一个新的研究热点.根据特征在类别中的分布特点,提出了基于类间、类内分布的方法.该方法不但充分考虑了稀有类别信息对特征选择的影响,使得构造的类别分布函数能够相当好地反映稀有特征的信息,而且能够选出对非平衡数据分类贡献大的特征.实验结果表明:此方法的MacroF1和MicroF1皆优于基于类别分布的特性选择(Category Distribution-Based Feature Selection,CDFS)和类别信息的方法.

原文链接:http://www.cqvip.com//QK/97044B/201102/37753835.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:特征选择 distribution Selection Category Election 非平衡数据集 特征选择 文本分类 类别分布 机器学习

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-11 17:54