楼主: AIworld
761 1

采用机器学习的聚类模型特征选择方法比较 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1363
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2017-9-16 16:40:08 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:针对机器学习聚类模型在特征选择时存在的问题,首先,对特征选择在聚类模型中的适用性进行分析并对其进行调整和改进. 然后,基于R语言中的递归特征消除(RFE)特征选择方法和Boruta特征选择方法进行特征选择算法设计. 最后,应用聚类内部有效性指标,对在线品牌忠诚度聚类模型优化结果进行分析,进而对特征选择方法进行比较研究. 结果表明: Boruta特征选择方法更具优势.

原文链接:http://www.cqvip.com/QK/91050X/201701/671082665.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:特征选择 机器学习 学习的 cqvip 交流学习 特征选择 聚类模型 机器学习 递归特征消除算法 Boruta方法

沙发
钱学森64 发表于 2017-9-16 16:45:12
谢谢分享

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-31 11:29