楼主: a智多星
893 0

支持向量机在车牌字符识别中的应用 [推广有奖]

  • 0关注
  • 14粉丝

会员

学术权威

72%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.1414
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38160 点
帖子
3814
精华
0
在线时间
830 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
a智多星 在职认证  发表于 2018-1-7 13:40:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:支持向量机(SVM)是由Vapnik等人提出的一类新型机器学习方法.该文在字符特征提取基础上,应用SVM算法对车牌中的英文字符进行识别,克服了一般的SVM算法识别数字位图时缺乏对相邻空间像素相关性考虑的不足,在满足实时性的条件下获得高识别率.通过与基于字符特征的BP网络识别方案相比较表明,该方案性能远优于神经网络的性能,可很好地解决神经网络方法中无法避免的局部极值问题.实验讨论了在应用SVM算法对字符进行识别时,核函数K和惩罚因子C的选择对识别率的影响问题.

原文链接:http://www.cqvip.com//QK/95200X/200305/7683168.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:支持向量机 向量机 Vapnik cqvip 神经网络 支持向量机 车牌字符识别 特征提取 Bp网络 核函数

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-1 04:00