楼主: DL-er
474 0

基于支持向量回归的唇动参数预测 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.0435
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38540 点
帖子
3853
精华
0
在线时间
813 小时
注册时间
2017-9-5
最后登录
2018-6-30

楼主
DL-er 在职认证  发表于 2018-1-9 16:20:02 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:支持向量机学习方法以结构风险最小化原则取代传统机器学习方法中的经验风险最小化原则,在有限样本的机器学习中显示出优异的性能.将这一新的统计学习方法应用到多媒体交互作用的研究中,用支持向量回归的方法由语音预测唇动参数.通过对语音的线性预测系数进行主分量分析,有效地压缩了声学特征参数的维数.结合交叉校验和最速下降优化方法,选择最佳的支持向量回归学习参数.在汉语0~9的任意数字串上对唇高参数的预测实验结果达到了均方误差0.0096,平均幅度误差7.2%及相关系数0.8的效果.这一结果优于一个文中优化过的人工神经网络所达到的性能,说明这一方法很有潜力.

原文链接:http://www.cqvip.com//QK/94913X/200311/8608980.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:人工神经网络 支持向量机 cqvip 学习方法 机器学习 支持向量机 支持向量回归 线性预测系数 主分量分析 人工神经网络

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-26 07:34