楼主: AIworld
563 0

基于支持向量机和人工神经网络的心血管疾病中医证候分类识别研究 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1434
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2018-2-4 04:20:02 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:目的探讨心血管疾病的中医证候分类识别方法,为中医证候的规范化研究提供一定的方法和依据。方法利用统一的中医问诊采集量表,采集临床心血管疾病的病例;然后根据信息的"有、无"分别赋值为"1、0",建立心血管疾病的中医临床信息数据库。基于支持向量机(径向基函数与多项式函数2种算法)和人工神经网络(ACON与OCON 2种结构的网络)对心血管疾病的中医临床信息和证候类别之间的关系进行分析,建立模型,观察其证候预测的准确性。结果经过比较,对于心气虚、心阳虚、心阴虚、痰浊、气滞、血瘀等心血管疾病常见中医证型,OCON网络的识别准确率最高,均在60%以上,其中心气虚和心阳虚证分别高达92.4%、82.9%。结论支持向量机和人工神经网络能为心血管疾病的临床中医证候识别提供一定的客观依据,其中OCON结构网络具有较高的识别准确率。http://www.cqvip.com//QK/93826A/201108/39146352.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:人工神经网络 心血管疾病 支持向量机 神经网络 人工神经 支持向量机 人工神经网络 心血管疾病 证候识别

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-27 15:06