楼主: AIworld
814 0

高维数据挖掘中基于中位数回归的特征提取新方法 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1363
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2018-1-10 10:00:02 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:为降低噪声对数据特征提取(变量选择)效果的不利影响,基于中位数回归分析方法,利用变量选择降维技术(正则化估计),提出了一种稳健、有效的特征提取(变量选择)新方法,并具体给出了估计算法,该算法具有快速计算的特点。实验结果表明,新方法能够有效地对高维数据集进行估计和变量选择,且具有较高的准确性,即使数据中的信噪比很低时,该方法仍具有较好的效果。因此,该方法为高维数据挖掘特征提取提供了稳健且有效的方法。

原文链接:http://www.cqvip.com//QK/93231X/201302/44760386.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:数据挖掘 中位数 新方法 cqvip 变量选择 高维数据 特征提取 变量选择 中位数回归 LASSO

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-1 18:53