楼主: 论文库
530 0

支持向量机的算法及应用综述 [推广有奖]

  • 0关注
  • 13粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
5 个
通用积分
0.0363
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38440 点
帖子
3839
精华
0
在线时间
836 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
论文库 在职认证  发表于 2018-1-10 20:40:03 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:支持向量机(SVM)是在统计学习的VC维理论和结构风险最小化原理基础上建立起来的机器学习方法,其训练算法本质上是一个二次规划的求解问题。首先简述了SVM的基本原理,然后对SVM算法进行了概括,如块算法、分解算法,序列最小优化算法及最小二乘支持向量机、模糊支持向量机和粒度支持向量机等。接着介绍了支持向量机的应用,最后对该领域存在的问题和发展趋势进行了展望。

原文链接:http://www.cqvip.com//QK/91038B/201602/67907470504849544850484853.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:支持向量机 向量机 cqvip HTML HTTP 支持向量机 统计学习理论 训练算法

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-3 06:13