楼主: DL-er
541 0

一种改进的支持向量机模式分类方法 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.0435
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38540 点
帖子
3853
精华
0
在线时间
813 小时
注册时间
2017-9-5
最后登录
2018-6-30

楼主
DL-er 在职认证  发表于 2018-1-12 20:20:02 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:支持向量(Support Vector Machine,SVM)是在统计学习理论基础上发展起来的一种新的机器学习方法,已成为目前研究的热点,并在模式识别领域有了广泛的应用。首先分析了支持向量机原理,随后引入一种改进的径向基核函数,在此基础上,提出了一种改进核函数的SVM模式分类方法。与基于IRIS数据,进行了计算机仿真实验,与基于模糊k-近邻的模式分类仿真结果比较。结果表明改进的SVM方法分类性能比模糊k-近邻算法(Fuzzy k—Nearest Neighbor,FKNN)的分类性能更好,运算时间更短,更易于实时实现。

原文链接:http://www.cqvip.com//QK/91481X/200704/25112559.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:支持向量机 向量机 machine Support Vector 支持向量机 径向基核函数 模糊k-近邻 模式分类 模式识别

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-8 19:18