楼主: DL-er
592 0

偏最小二乘回归的贝叶斯正则化神经网络集成模型在证券分析预测中的应用 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.0435
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38540 点
帖子
3853
精华
0
在线时间
813 小时
注册时间
2017-9-5
最后登录
2018-6-30

楼主
DL-er 在职认证  发表于 2018-1-13 10:40:06 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:神经网络集成技术能有效地提高神经网络的预测精度和泛化能力,已经成为机器学习和神经计算领域的一个研究热点.利用Bagging技术和不同的神经网络算法生成集成个体,并用偏最小二乘回归方法从中提取集成因子,再利用贝叶斯正则化神经网络对其集成,以此建立上证指数预测模型,通过上证指数开、收盘价进行实例分析,计算结果表明该方法预测精度高、稳定性好.

原文链接:http://www.cqvip.com//QK/93074X/200714/25018151.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:偏最小二乘回归 偏最小二乘 证券分析 最小二乘 神经网络 贝叶斯正则化 神经网络 偏最小二乘回归 集成

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-31 06:02