楼主: AIworld
658 0

基于深度学习的超短期光伏精细化预测模型研究 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
0
论坛币
215 个
通用积分
2.1363
学术水平
1 点
热心指数
1 点
信用等级
1 点
经验
39460 点
帖子
3934
精华
0
在线时间
850 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
AIworld 在职认证  发表于 2018-1-13 22:59:59 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:光伏发电系统的超短期功率预测对电网调度的计划安排及光伏发电系统的优化运行具有重要意义。机器学习、人工智能领域的技术进步为精细化分析光伏功率预测影响因素并提高光伏预测精度提供了有效途径。提出一种基于深度结构网络模型的光伏超短期功率预测方法,首先根据光伏发电系统的机理特征,分析深度学习算法处理光伏预测问题的可行性;然后提出基于深度学习算法的光伏功率预测模型,采用基于受限玻尔兹曼机的深度置信网络提取深层特征完成无监督学习过程,采用有监督BP神经网络作为常规拟合层获得预测结果;并立足于实际需求,建立含离线训练和在线预测的双阶段光伏发电预测系统,分析天气信息及历史信息的输入属性;最后利用光伏发电系统的实际运行数据进行仿真,验证算法准确性和有效性,通过比较深度结构是否包含无监督学习过程,说明其在预测中的重要性。

原文链接:http://www.cqvip.com//QK/95419X/201706/672421363.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:深度学习 预测模型 精细化 学习的 BP神经网络 光伏发电 超短期功率预测 精细化分析 深度学习 离线训练和在线预测

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-2 06:01