楼主: DL-er
749 0

一种大数据环境下的新聚类算法 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.0435
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38540 点
帖子
3853
精华
0
在线时间
813 小时
注册时间
2017-9-5
最后登录
2018-6-30

楼主
DL-er 在职认证  发表于 2018-1-16 16:20:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:提出了一种新的聚类算法NGKCA,该算法克服了经典聚类算法检测率和稳定性的不足,适用于解决大数据环境下的聚类问题。NGKCA聚类算法包括4个阶段:首先利用谱聚类NJW算法对大数据集进行列降维和数据归一化处理,其次引入对初始值不敏感的粒子群算法对数据集进行行降维从而选出临时的聚类中心集,接着通过全局Kmeans算法对最佳聚类中心集进行聚类以获取聚类中心点,最后使用粒子群算法对聚类中心点进行调整进而获取最终的聚类划分。在一些著名的机器学习数据集和国际标准的网络安全数据集KDDCUP99上进行实验,结果表明:提出的算法比谱聚类、Kmeans、粒子群、全局Kmeans等常见算法具有更好的稳定性和更高的检测率,与全局Kmeans算法相比具有更优的时间复杂度。

原文链接:http://www.cqvip.com//QK/92817X/201512/667748665.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:聚类算法 大数据 kmeans means 粒子群算法 全局Kmeans 谱聚类 粒子群优化 聚类 KDDCUP99

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-2 10:45