楼主: 论文库
527 0

边坡位移预测的RBF神经网络方法 [推广有奖]

  • 0关注
  • 13粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
5 个
通用积分
0.0363
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38440 点
帖子
3839
精华
0
在线时间
836 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
论文库 在职认证  发表于 2018-1-18 16:20:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:利用边坡实测位移序列来预测边坡未来时间的位移,可以有效地判断边坡的稳定性.由于神经网络可以通过对样本的反复学习来反映边坡复杂的非线性演化关系,其预测效果要优于传统的预测方法.RBF神经网络作为一种性能良好的前馈网络,具有更好的逼近能力和全局最优特性.以边坡位移时间序列为基础,采用RBF神经网络建立边坡位移预测模型,通过最近邻聚类学习算法实现边坡位移预测,具有结构简单、学习速度快、预测精度高的特点,网络的外推能力也较强.通过2个工程实例说明边坡位移预测的RBF神经网络方法的有效性.

原文链接:http://www.cqvip.com//QK/96026X/2006z1/1000241335.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:神经网络 神经网 RBF cqvip HTML 边坡工程 边坡 位移 RBF神经网络 最近邻聚类算法

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-19 10:09