楼主: DL-er
554 0

基于改进蚁群算法和支持向量机的网页分类研究 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.0435
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38540 点
帖子
3853
精华
0
在线时间
813 小时
注册时间
2017-9-5
最后登录
2018-6-30

楼主
DL-er 在职认证  发表于 2018-1-24 18:00:03 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:网页分类技术是web数据挖掘的一个重要分支,是基于自然语言处理技术和机器学习学习算法的一个典型的具体应用。基于统计学习理论和蚁群算法理论,该文提出了一种基于支持向量机和改进蚁群算法相结合的构造网页分类器的高效分类方法,实验结果证明了该方法的有效性和鲁棒性,弥补了仅利用支持向量机对于大样本训练集收敛慢的不足,具有较好的准确率和召唤率。

原文链接:http://www.cqvip.com//QK/87339A/200912Z/668789083200935081.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:支持向量机 向量机 web数据挖掘 cqvip 自然语言 改进蚁群算法 网页分类 支持向量机 贡献函数

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-25 04:39