楼主: 论文库
448 0

基于条件随机场的中文短文本分词方法 [推广有奖]

  • 0关注
  • 13粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
5 个
通用积分
0.0363
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38440 点
帖子
3839
精华
0
在线时间
836 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
论文库 在职认证  发表于 2018-1-24 20:20:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:中文分词是信息检索工作的一项先决任务。随着大数据时代的到来,信息检索工作对于中文分词准确率和召回率的要求也不断提高。该文提出了一种针对中文短文本的分词方法。该方法首先利用机器学习中的条件随机场模型对待处理的中文短文本进行初步分词,然后再利用传统词典分词方法对初步分词结果进行修正,从而完成分词工作。针对中文短文本的特点,该方法在条件随机场的标记选择和特征模板编写上做了相应优化。测试结果表明,该方法改善了传统的基于词典的分词法因为未登录词和交叠歧义而产生的准确率和召回率下降的问题,并在Sighan bakeoff 2005的四个语料测试集中均取得了0.95以上的FScore。实验证明:该方法适合应用于信息检索领域的中文短文本分词工作。

原文链接:http://www.cqvip.com//QK/93884X/201508/666582229.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:score cqvip 大数据时代 信息检索 中文分词 中文分词 条件随机场 机器学习

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-2 20:35