楼主: 论文库
558 0

一种有监督学习证据理论分类器 [推广有奖]

  • 0关注
  • 13粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
5 个
通用积分
0.0363
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38440 点
帖子
3839
精华
0
在线时间
836 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
论文库 在职认证  发表于 2018-1-25 03:40:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:经典的证据理论不包括从实例中学习基本信度分配的机制,因此应用范围受到一定限制。通过在证据理论中引入神经网络的学习机制,该文提出了一种有监督学习证据理论分类器。该分类器使用一种经过修改的Widmw-Hoff学习规则从训练实例中学习基本信度分配信息。新实例到来后,该分类器在所学基本信度分配的基础上,使用证据理论合成公式对新实例作分类。新分类器拓展了证据理论的应用领域。实验结果表明该分类器是有效的。

原文链接:http://www.cqvip.com//QK/91690X/200515/15964432.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:分类器 cqvip HTML 学术交流 大家共享 机器学习 证据理论 分类器 Widrow-Hoff 学习规则

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-3 11:47