楼主: 论文库
599 0

一种基于ACO的代价敏感集成分类器 [推广有奖]

  • 0关注
  • 13粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
5 个
通用积分
0.0363
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38440 点
帖子
3839
精华
0
在线时间
836 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
论文库 在职认证  发表于 2018-1-2 11:40:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:提出了一种白适应代价优化算法ACO,利用“登山式”方法查找最适合重采样数据子集的最优误分类代价值用于建立基分类器,克服了固定式误分类代价不尽科学和客观的缺点,利用重采样技术实现了数据集样本不足时的分类器训练.通过“投票”方式对原始数据集中的实例重新标记类标,学习得到一个适应于类分布不均衡数据集的自适应的集成分类器.实验证明,用白适应代价优化算法实现的分类器在类分布不均衡的数据集上的分类性能明显优于CSC,MetaCost和naiveBayes等建立的分类器.

原文链接:http://www.cqvip.com//QK/90344A/201010/37790196.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:分类器 cqvip Bayes naive 大家共享 机器学习 代价敏感 误分类代价 优化 集成分类器

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-31 10:56