楼主: 人工智能-AI
498 0

基于支持向量学习机的HIV-1蛋白酶抑制剂的活性预测 [推广有奖]

  • 0关注
  • 10粉丝

会员

学术权威

71%

还不是VIP/贵宾

-

威望
0
论坛币
25 个
通用积分
0.0584
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
37770 点
帖子
3776
精华
0
在线时间
853 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
人工智能-AI 在职认证  发表于 2018-1-26 09:00:03 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:为TNNA体免疫缺陷蛋白酶抑制剂的活性,计算了表征分子的组成和拓扑特征的462个分子描述符,用Kennard-Stone方法和随机方法进行了训练集和测试集设计,用Monte Carlo模拟退火方法进行变量筛选,并分别用神经网络。逻辑回归,k-近邻和支持向量学习机方法建立了HIV-1蛋白酶的抑制剂模型.结果表明支持向量学习机优于其余机器学习方法,用SVM方法所建立的最优模型的最后预测正确率达到98.24%.

原文链接:http://www.cqvip.com//QK/91047X/200703/23758055.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:HIV 抑制剂 学习机 蛋白酶 Monte Carlo 蛋白酶抑制剂 分子描述符 机器学习方法 变量筛选

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-1 18:29