楼主: a智多星
452 0

基于交叉分组技术的集成算法研究 [推广有奖]

  • 0关注
  • 14粉丝

会员

学术权威

72%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.1485
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38160 点
帖子
3814
精华
0
在线时间
830 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
a智多星 在职认证  发表于 2018-1-26 09:40:02 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:集成学习主要通过扰动训练数据集来产生较强泛化能力。研究者们提出了各种各样的方法来实现这一目标,但如何扰动训练数据集以达到最佳的泛化能力并没有被深入研究。本文中,提出了对训练数据集进行扰动的交叉分组(cross-grouping)方法,通过改变交叉因子以实现对训练数据集不同程度的扰动,从而实现当集成规模较小时,得到更强的泛化能力。实验表明,当选择合适的交叉因子时,CG-Bagging泛化能力要强于Bagging和Boosting,略优于Decorate和RandomForests。

原文链接:http://www.cqvip.com//QK/92817X/200803/26833642.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:randomForest Grouping decorate Boosting bagging 机器学习 集成学习 泛化能力 交叉分组

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-12 01:03