楼主: 人工智能-AI
467 0

一种求解截断Hinge损失的软阈值坐标下降算法 [推广有奖]

  • 0关注
  • 10粉丝

会员

学术权威

71%

还不是VIP/贵宾

-

威望
0
论坛币
25 个
通用积分
0.0584
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
37770 点
帖子
3776
精华
0
在线时间
853 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
人工智能-AI 在职认证  发表于 2018-1-27 00:39:59 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:有效地减少支持向量数目能够提高分类器的鲁棒性和精确性,缩短支持向量机(supportvectorITIachine,SVM)的训练和测试时间.在众多稀疏算法中,截断Hinge损失方法可以显著降低支持向量的数目,但却导致了非凸优化问题.一些研究者使用CCCP(concave—convexprocedure)方法将非凸问题转化为多阶段凸问题求解,不仅增加了额外计算量,而且只能得到局部最优解.为了弥补上述不足,提出了一种基于CCCP的软阈值坐标下降算法.用坐标下降方法求解CCCP子阶段凸问题,提高计算效率;对偶SVM中引入软闽值投影技巧,能够减少更多的支持向量数目,同时选择合适的正则化参数可消除局部最优解的不良影响,提高分类器的分类精度.仿真数据库、UCI数据库和大规模真实数据库的实验证实了所提算法正确性和有效性.

原文链接:http://www.cqvip.com//QK/94913X/201311/47547373.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:ING Procedure Support concave Convex 机器学习 支持向量 截断Hinge损失 CCCP 坐标下降

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-5 19:47