楼主: a智多星
512 1

基于最小二乘支持向量机的短期负荷预测模型 [推广有奖]

  • 0关注
  • 14粉丝

会员

学术权威

72%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.1414
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38160 点
帖子
3814
精华
0
在线时间
830 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
a智多星 在职认证  发表于 2018-1-27 18:00:01 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:支持向量机(SVM)是近年来发展起来的机器学习的新方法,它较好地解决了小样本、非线性、高维数、局部极小点等实际问题。研究了支持向量机的拓展算法——最小二乘支持向量机(LSSVM),并将其应用于电力系统短期负荷时间序列预测。通过实例并与神经网络模型预测结果相比较表明,LSSVM模型的预测精度要明显高于神经网络模型,验证了LSS-VM模型可以很好地应用于短期负荷时间序列预测,并且具有较高的准确性与有效性,这为短期负荷预测提供了一个新的解决思路。http://www.cqvip.com//QK/97360A/201018/35314958.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:支持向量机 负荷预测 最小二乘 预测模型 向量机 最小二乘支持向量机 神经网络 短期负荷预测 时间序列预测

沙发
钱学森64 发表于 2018-1-27 19:14:36
谢谢分享

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-6 08:23