楼主: 论文库
814 1

基于Autoencoder网络的数据降维和重构 [推广有奖]

  • 0关注
  • 13粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
5 个
通用积分
0.0363
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38440 点
帖子
3839
精华
0
在线时间
836 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
论文库 在职认证  发表于 2018-1-27 18:20:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:在机器学习,模式识别以及数据挖掘等诸多研究领域中,往往会面临着“维数灾难”问题。因此,特征数据的降维方法,即将高维的特征数据如何进行简化投射到低维空间中再进行处理,成为当前数据驱动的计算方法研究热点之一。该文引入一种特殊的非线性降维方法,称为自编码(Autoencoder)神经网络,该方法采用CRBM(Continuous Restricted Boltzmann Machine)的网络结构,通过训练具有多个中间层的双向深层神经网络将高维数据转换成低维嵌套并继而重构高维数据。特别地,自编码网络提供了高维数据空间和低维嵌套结构的双向映射,有效解决了大多数非线性降维方法所不具备的逆向映射问题。将Autoencoder用于人工数据和真实图像数据的实验表明,Autoencoder不仅能发现嵌入在高维数据中的非线性低维结构,也能有效地从低维结构中恢复原始高维数据。http://www.cqvip.com//QK/91130A/200905/30711502.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:encode code Auto NCO COD 自编码网络 高维数据 降维 重构

沙发
钱学森64 发表于 2018-1-27 19:06:34
谢谢分享

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-31 09:45