楼主: a智多星
436 0

基于深度学习特征的稀疏表示的人脸识别方法 [推广有奖]

  • 0关注
  • 14粉丝

会员

学术权威

72%

还不是VIP/贵宾

-

威望
0
论坛币
15 个
通用积分
1.1414
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38160 点
帖子
3814
精华
0
在线时间
830 小时
注册时间
2017-9-5
最后登录
2018-4-11

楼主
a智多星 在职认证  发表于 2018-2-8 21:40:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:本文针对传统的基于稀疏表示的人脸识别方法在小样本情况下对类内变化鲁棒性不强的问题,从特征的层面入手,提出了基于深度学习特征的稀疏表示的人脸识别方法。本方法首先利用深度卷积神经网络提取对类内变化不敏感的人脸特征,然后通过稀疏表示对所得人脸特征进行表达分类。本文通过实验,说明了深度学习得到的特征也具有一定的子空间特性,符合基于稀疏表示的人脸识别方法对于子空间的假设条件。实验证明,基于深度学习特征的稀疏表示的人脸识别方法具有较好的识别准确度,对类内变化具有很好的鲁棒性,特别在小样本问题中具有尤为突出的优势。http://www.cqvip.com//QK/92035A/201603/669163192.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:人脸识别 识别方法 深度学习 cqvip 假设条件 机器学习 生物特征识别 深度学习 特征学习 子空间

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-30 11:07