楼主: 论文库
483 0

一种基于特征簇的微博短文本情感分类方法 [推广有奖]

  • 0关注
  • 13粉丝

会员

学术权威

74%

还不是VIP/贵宾

-

威望
0
论坛币
5 个
通用积分
0.0363
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
38440 点
帖子
3839
精华
0
在线时间
836 小时
注册时间
2017-9-5
最后登录
2018-4-9

楼主
论文库 在职认证  发表于 2018-2-9 10:20:02 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要:针对由微博短文本特征规模大、自身特征较少等特点导致的数据稀疏性,提出一种基于特征簇的微博情感分类方法.提出的分类方法以大规模语料库为基础,利用word2vec模型学习词语之间潜在的语义关联,将单个词语表示成多维向量的形式;结合情感词典,提取出微博文本的情感特征集,在基于词向量计算词语相似度方法的基础上,将情感特征合并为特征簇,以此构造低维的文本向量;最后利用机器学习算法,构建情感分类器,实现微博短文本的情感分类.实验结果表明,本文提出的方法对情感特征的降维是可行和有效的,并且取得很好的情感分类效果.http://www.cqvip.com//QK/95659X/201612/670744826.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:机器学习算法 VEC模型 cqvip 学习算法 word 微博情感 数据稀疏 词向量 特征簇 机器学习

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-30 14:26